2 research outputs found

    Data_Sheet_1_Inorganic Nitrogen Application Affects Both Taxonomical and Predicted Functional Structure of Wheat Rhizosphere Bacterial Communities.XLSX

    No full text
    <p>The effects of fertilizer regime on bulk soil microbial communities have been well studied, but this is not the case for the rhizosphere microbiome. The aim of this work was to assess the impact of fertilization regime on wheat rhizosphere microbiome assembly and 16S rRNA gene-predicted functions with soil from the long term Broadbalk experiment at Rothamsted Research. Soil from four N fertilization regimes (organic N, zero N, medium inorganic N and high inorganic N) was sown with seeds of Triticum aestivum cv. Cadenza. 16S rRNA gene amplicon sequencing was performed with the Illumina platform on bulk soil and rhizosphere samples of 4-week-old and flowering plants (10 weeks). Phylogenetic and 16S rRNA gene-predicted functional analyses were performed. Fertilization regime affected the structure and composition of wheat rhizosphere bacterial communities. Acidobacteria and Planctomycetes were significantly depleted in treatments receiving inorganic N, whereas the addition of high levels of inorganic N enriched members of the phylum Bacteroidetes, especially after 10 weeks. Bacterial richness and diversity decreased with inorganic nitrogen inputs and was highest after organic treatment (FYM). In general, high levels of inorganic nitrogen fertilizers negatively affect bacterial richness and diversity, leading to a less stable bacterial community structure over time, whereas, more stable bacterial communities are provided by organic amendments. 16S rRNA gene-predicted functional structure was more affected by growth stage than by fertilizer treatment, although, some functions related to energy metabolism and metabolism of terpenoids and polyketides were enriched in samples not receiving any inorganic N, whereas inorganic N addition enriched predicted functions related to metabolism of other amino acids and carbohydrates. Understanding the impact of different fertilizers on the structure and dynamics of the rhizosphere microbiome is an important step toward developing strategies for production of crops in a sustainable way.</p

    Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome

    No full text
    Land applications of municipal sewage sludge may pose a risk of introducing antibiotic resistance genes (ARGs) from urban environments into agricultural systems. However, how the sewage sludge recycling and application method influence soil resistome and mobile genetic elements (MGEs) remains unclear. In the present study, high through-put quantitative PCR was conducted on the resistome of soils from a field experiment with past (between 1994 and 1997) and annual (since 1994) applications of five different sewage sludges. Total inputs of organic carbon were similar between the two modes of sludge applications. Intrinsic soil resistome, defined as the ARGs shared by the soils in the control and sludge-amended plots, consisted of genes conferring resistance to multidrug, β-lactam, Macrolide-Lincosamide-Streptogramin B (MLSB), tetracycline, vancomycin, and aminoglycoside, with multidrug resistance genes as the most abundant members. There was a strong correlation between the abundance of ARGs and MGE marker genes in soils. The composition and diversity of ARGs in the five sludges were substantially different from those in soils. Considerable proportions of ARGs and MGE marker genes in the sludges attenuated following the application, especially aminoglycoside and tetracycline resistance genes. Annual applications posed a more significant impact on the soil resistome, through both continued introduction and stimulation of the soil intrinsic ARGs. In addition, direct introduction of sludge-specific ARGs into soil was observed especially from ARG-rich sludge. These results provide a better insight into the characteristics of ARG dissemination from urban environment to the agricultural system through sewage sludge applications
    corecore